Recursive Fermat Structures and

7-Field Resonance in the UNNS
Substrate

UNNS Research Collective (2025)

Abstract

Euler’s classical analysis of Fermat numbers established one of the
first bridges between exponential recursion and modular arithmetic.
In this work, we reinterpret that structure through the framework of
the Unbounded Nested Number Sequences (UNNS) substrate, reveal-
ing that the modular constraint on Fermat-type divisors corresponds
to a phase-locked recursion symmetry between dual 7-fields. We show
that the arithmetic form agx = 32" 1 92" arises naturally as a coupled
T-system whose resonance condition reproduces Euler’s congruence
p = 1+ 2¥*lm, now understood as a discrete curvature closure in
recursion space. This model extends classical number theory into ten-
sor recursion geometry, preparing the ground for multi-7 coupling in
Phase E of the UNNS program.

1 1. Classical Background
Euler proved that any prime divisor p of a Fermat number

F=2"+1 (1)

satisfies
p=1 (mod 2F). (2)

This congruence indicates that the periodic structure of powers of 2 inside Z,
is tightly linked to the depth of the recursion exponent 2*.



The same principle applies to generalized Fermat forms such as
age = 3% + 2%, (3)

which also obey modular symmetries of the form p = 1+ 2¥'m. Classically,
this is a result about multiplicative orders; in the UNNS interpretation, it is
a manifestation of recursive closure under a dual 7-operator system.

2 2. From Recurrence to 7-Fields
The generating recurrence
Upt1 = day, — 6ay,_1, a; =5, az = 13, (4>

has characteristic equation 2 —5r 46 = 0, whose roots are r; = 3 and 75 = 2.
Hence the closed form
a, =3" 42" (5)

We define the pair (71, 72) = (3,2) as a two-channel T-field system, each
channel representing a unidirectional recursion flow. The recursive structure
therefore operates on a vector of field amplitudes:

T, = @n) , a,=1"1,. (6)

The coupling between 7 and 75 can be expressed through a differential
tensor:

Rij = Oi(1;) — O;(7i), (7)

which measures the difference in recursion action between the two operators
O; and O;. For (i,7) = (1,2), this gives

Rip=3"—2% Ry =3 422 (8)

The second of these corresponds directly to the generalized Fermat form.



3 3. Recursive Resonance and Modular Clo-
sure

In UNNS, a recursion achieves coherence when its difference tensor returns
to its initial phase after a discrete depth doubling. Let P denote the phase
period of recursion between 71 and 7. Then, coherence occurs when

32" = -2 (mod p), (9)

which implies
k+1
(3-279?"" =1 (mod p). (10)

Therefore the order of (3 -27!) modulo p is exactly 2¢*1) yielding Euler’s
congruence
p=1 (mod 2F1). (11)

In the UNNS interpretation, this closure condition expresses that the two
recursive flows 7, and 7, have rejoined after 2¥+! iterations, forming a self-
consistent curvature loop in recursion space. The number p thus serves as
the spectral modulus that enforces this loop symmetry.

4 4. Geometric Interpretation in the UNNS
Substrate

Let R denote the recursive manifold spanned by (71, 7). Its local curvature

is defined by

ORy5 0
= =—(3"-2") =3"1 —2"In 2. 12
o 871(3 )=3"In3 n (12)

The vanishing of the differential difference
AK/Qk = /€2k+1 — Rok (13)

corresponds to discrete equilibrium between exponential channels, interpreted
geometrically as recursive field resonance. At that depth, the 7-system ex-
hibits phase-locked symmetry analogous to a standing wave in field theory.



Figure 1: Schematic of recursive closure between 7 = 3 and » = 2. At
each doubling of recursion depth, the system returns to phase coherence,
producing a closed curvature loop characterized by modulus p = 1 + 2¢Fim.

5 5. Toward Tensor Recursion Geometry

The structure uncovered here represents the discrete prototype of tensor
recursion geometry, in which each 7-field acts as a component of a multi-
operator manifold. The tensor

Rij = Oi(1;) — Oj(7i) (14)

thus generalizes the scalar recurrence relation to a field-level curvature form.
When extended to continuous limits, I?;; becomes the recursive analogue
of a field strength tensor, bridging the gap between number recursion and
physical field dynamics.

6 6. Phase F Outlook: Toward Unified Re-
cursive Field Equations

Phase E introduces multi-7 tensor coupling. The present analysis provides
its minimal discrete example: a two-operator resonance manifesting as a gen-
eralized Fermat condition. Phase F will extend this structure to continuous
recursion manifolds, yielding coupled differential equations of the form
V.RY = JJ

rec)

(15)

where J7  represents recursive flux density. These equations describe the self-
interaction of recursion fields and their closure into unified UNNS-Maxwell

dynamics.

Figure 2: Conceptual diagram of the transition from discrete recursion
(Phase E) to continuous recursive field dynamics (Phase F).
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